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Why Categories?

• Discrete types exist in nature

• Distinct causal structures

• Explain associations among observed 
variables

• Distinct predictions for different categories

Why Continua?

• Individual differences exist in nature

• Reflect underlying causal structures

• Explain associations with simpler structure

• Make predictions
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Infant Temperament

• Kagan -- inhibited versus uninhibited

• Distinct patterns of reactivity in terms of 
motor activity and crying in infancy related 
to behaviors in later childhood

• But is it categorical or continuous?

Metabolic Syndrome
• Collection of risk factors associated with obesity, 

diabetes, cardiovascular problems

• Triglycerides, glucose, HDL cholesterol, systolic 
blood pressure, diastolic blood pressure, waist 
circumference

• Above threshold on 3 or more indicators 
sometimes considered diagnostic of having 
“metabolic syndrome”
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Mixture Models in Measurement

• Modeling birth weight and gestational age of 
newborns in Finland

• Adding “guessing” parameter to IRT model

• Identifying over- and under-reporters in self-
reports of dietary intake

Choosing Between Mixture and 
Factor Models

• Should be made on theoretical and 
substantive grounds

• Deep divisions between “camps” often not 
justified

• Some models with latent “categories” or 
“continua” are surprisingly similar in formal 
structure and provide similar fit to the data
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Common Factor Model
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Mixture model also implies a 
covariance structure

Θ+ΛΦΛ=Σ T

Σ = implied variance/covariance matrix

Λ = matrix of factor loadings

Φ = matrix factor variances and covariances

Θ = diagonal matrix of unique variances
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Maximum Likelihood
Estimation
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Common Factor Model
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Multivariate Normal Mixture

),(...),(),(~ 222111 kkk NNNY Σ++Σ+Σ µπµπµπ

Observed Y distribution is composed of K 
subgroups.

Yields profiles of means, component probabilities 
and conditional variances.

Conditional independence assumes within group 
covariance matrices are diagonal.

ML Estimation

)),(...),((),,|( 111 kkk NNYL Σ++ΣΠ=Σ µπµπµπ
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Similar Models?

• A formal correspondence between mixture 
and factor models has been noted by:

– McDonald 1967
– Bartholomew 1988
– Waller & Meehl 1998
– Molenaar & von Eye 1994

Similar Models

• Although often described completely 
differently, models actually highly similar

• Both imply a variance/covariance structure
• “factor loading” = “conditional mean”
• “factor variance” = “group probability”
• “uniqueness” = “pooled within variance”
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First and Second Moments Implied by

Latent Profile Model

Latent profile model also implies a 
covariance structure

Θ+ΛΦΛ=Σ T

Σ = implied variance/covariance matrix

Λ = matrix of group means  (µ)

Φ = diagonal matrix with group probabilities (π)

Θ = diagonal matrix of pooled within group variances
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Rewriting Latent Profile Model
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Framed as Missing Data Problem
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Empirical Example

• Perceptions of Adolescents
• Respondents asked to rate on a scale of 

1-10 how likely it was that an adolescent 
would display given attribute

• 44 attributes in all, subset of 9 selected for 
this particular analysis

1 2 3 4 5 6 7 8 9
Confused 2.98
Considerate -0.02 2.82
Depressed 1.89 -0.08 4.56
Emotional 1.36 -0.03 1.63 2.39
Generous 0 1.93 0.17 0.09 2.66
Hardworking 0.06 1.6 0.04 0.1 1.79 2.86
Helpful -0.04 1.68 -0.03 -0.02 1.82 1.89 2.6
Intelligent 0.18 0.43 0.37 0.32 0.51 0.53 0.61 1.91
Tests Limits 0.86 -0.28 1.12 0.73 0.14 -0.07 0.05 0.46 2.31

Observed Covariance Matrix of Attributes
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Factor Analysis

• Ratings covary due to underlying shared factor 
structure

• Determine K as dimensionality of factor space
• Factors represent salient dimensions along 

which college students perceive adolescents
• Decompose into shared variance (communality) 

and non-shared variance (uniqueness)

 F1 F2 
Confused  .71 
Considerate .77  
Depressed  .71 
Emotional  .70 
Generous .85  
Hardworking .78  
Helpful .83  
Intelligent .29 .18 
Tests Limits  .48 
 

Two Factor ML Solution with Varimax Rotation 
(solution presented in correlation metric)
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Latent Profile Model

• Population of raters is composed of 
heterogeneous mix of qualitatively 
different perspectives

• Successively test models with increasing 
K number of subgroups

• Subgroups represent qualitatively different 
perspectives (or types of raters)

Estimating Latent Profiles

• Successive models with K = 1,2,3 yield 
increasingly better fitting models

• For K = 3 multiple local modes found
• Solution found with the highest likelihood 

represented below in terms of conditional 
means, group probabilities and conditional 
variances 

• However, this could also be represented 
as the factor loadings and uniquenesses
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1 2 3

Confused -0.37 0.02 0.23 2.91
Considerate -1.54 1.53 -0.04 1.46
Depressed -0.34 -0.02 0.23 4.48
Emotional -0.53 -0.06 0.39 2.23
Generous -1.66 1.66 -0.05 1.07
Hardworking -1.53 1.56 -0.06 1.48
Helpful -1.61 1.76 -0.16 0.96
Intelligent -0.43 0.65 -0.16 1.71
Tests Limits 0.05 0.25 -0.21 2.26

Probabilities 0.28 0.29 0.43

Pooled Within VarianceGroup Means

Implications

• Similar, but definitely not equal in fit

• Rotational indeterminacy?

• Clues to fitting mixture models better (start 
values, over fitting)
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Similar… but not equal in fit

• Although the ML 3-class solution can be written 
as a 3 – factor model, the actual fit to the 
observed covariance matrix is poor

• The problem is immediately obvious if we 
remain flexible in viewing the mixture solution 
both as a factor model and as a mixture model

• The communality of the two factor solution is 
very different than the “between group” variance 
in the three group mixture 

1 2 3

Confused -0.37 0.02 0.23 2.91
Considerate -1.54 1.53 -0.04 1.46
Depressed -0.34 -0.02 0.23 4.48
Emotional -0.53 -0.06 0.39 2.23
Generous -1.66 1.66 -0.05 1.07
Hardworking -1.53 1.56 -0.06 1.48
Helpful -1.61 1.76 -0.16 0.96
Intelligent -0.43 0.65 -0.16 1.71
Tests Limits 0.05 0.25 -0.21 2.26

Probabilities 0.28 0.29 0.43

Pooled Within VarianceGroup Means
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 F1 F2 
Confused  .71 
Considerate .77  
Depressed  .71 
Emotional  .70 
Generous .85  
Hardworking .78  
Helpful .83  
Intelligent .29 .18 
Tests Limits  .48 
 

Two Factor ML Solution with Varimax Rotation

Rotational Indeterminacy?

• If the conditional means and group 
probabilities can be represented as factor 
loadings and factor variances, then are 
there an infinite number of mixture 
solutions? Yes and no.
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Rotations

Θ+ΛΦΛ=Σ TTT TTTT

Θ+ΛΦΛ=Σ T

1 2 3

Confused -0.37 0.02 0.23 2.91
Considerate -1.54 1.53 -0.04 1.46
Depressed -0.34 -0.02 0.23 4.48
Emotional -0.53 -0.06 0.39 2.23
Generous -1.66 1.66 -0.05 1.07
Hardworking -1.53 1.56 -0.06 1.48
Helpful -1.61 1.76 -0.16 0.96
Intelligent -0.43 0.65 -0.16 1.71
Tests Limits 0.05 0.25 -0.21 2.26

Probabilities 0.28 0.29 0.43

Pooled Within VarianceGroup Means
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“Equivalent” Mixture Solution

1 2 3

Confused -1.47 -0.14 0.23 2.91
Considerate -10.39 0.25 -0.04 1.46
Depressed -1.25 -0.15 0.23 4.48
Emotional -1.87 -0.25 0.39 2.23
Generous -11.22 0.28 -0.05 1.07
Hardworking -10.44 0.27 -0.06 1.48
Helpful -11.28 0.37 -0.16 0.96
Intelligent -3.53 0.20 -0.16 1.71
Tests Limits -0.51 0.17 -0.20 2.26

Probabilities 0.01 0.56 0.43

Group Means Pooled Within Variance

Insights into Fitting Models

• Suggests starting values

• Fitting too many classes to mixture model 
overdetermines the covariance structure

• Connection with clustering solutions as 
discussed in other fields (computer 
science and math)
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Choosing Start Values

• Mixture models often multimodal
• Suggestion is to start from variety of initial 

values
• Factor structure provides excellent choice 

of starting values
• In this example, four class mixture starting 

at hi/lo on two factor model fits very well

Summary

• Up to first and second moments, mixture 
model solutions can be rewritten as factor 
models

• Mixture solution is not necessarily a good 
fit of covariance structure of the data

• Rotational indeterminacy of factor solution 
will not fit mixture model likelihood 
equivalently
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Summary

• Complementary view of mixture and factor 
models yields insight for estimation and 
interpretation

• Many areas for future research on this 
topic (estimation, model diagnostics, 
extensions to other models etc.) 


