Categories or Continua? The Correspondence Between Factor and Mixture Models

Eric Loken HDFS Pennsylvania State University

Peter Molenaar HDFS Pennsylvania State University

May 18/19 2006

Infant Temperament

- Kagan -- inhibited versus uninhibited
- Distinct patterns of reactivity in terms of motor activity and crying in infancy related to behaviors in later childhood
- But is it categorical or continuous?

Mixture Models in Measurement

- Modeling birth weight and gestational age of newborns in Finland
- Adding "guessing" parameter to IRT model
- Identifying over- and under-reporters in selfreports of dietary intake

Choosing Between Mixture and Factor Models

- Should be made on theoretical and substantive grounds
- Deep divisions between "camps" often not justified
- Some models with latent "categories" or "continua" are surprisingly similar in formal structure and provide similar fit to the data

Common Factor Model

$$\begin{split} Y_{1i} &= \lambda_{11}F_{1i} + \lambda_{12}F_{2i} + \lambda_{13}F_{3i} + \varepsilon_{1i} \\ Y_{2i} &= \lambda_{21}F_{1i} + \lambda_{22}F_{2i} + \lambda_{23}F_{3i} + \varepsilon_{2i} \\ Y_{3i} &= \lambda_{31}F_{1i} + \lambda_{32}F_{2i} + \lambda_{33}F_{3i} + \varepsilon_{3i} \\ Y_{4i} &= \lambda_{41}F_{1i} + \lambda_{42}F_{2i} + \lambda_{43}F_{3i} + \varepsilon_{4i} \\ Y_{5i} &= \lambda_{51}F_{1i} + \lambda_{52}F_{2i} + \lambda_{53}F_{3i} + \varepsilon_{5i} \\ \cdots \\ Y_{pi} &= \lambda_{p1}F_{1i} + \lambda_{p2}F_{2i} + \lambda_{p3}F_{3i} + \varepsilon_{pi} \end{split}$$

• A formal correspondence between mixture and factor models has been noted by:

- McDonald 1967
- Bartholomew 1988
- Waller & Meehl 1998
- Molenaar & von Eye 1994

- Although often described completely differently, models actually highly similar
- Both imply a variance/covariance structure
- "factor loading" = "conditional mean"
- "factor variance" = "group probability"
- "uniqueness" = "pooled within variance"

Rewriting Latent Profile Model

$$Y_{1i} = \mu_{11}F_{1i} + \mu_{12}F_{2i} + \mu_{13}F_{3i} + \varepsilon_{1i}$$

$$Y_{2i} = \mu_{21}F_{1i} + \mu_{22}F_{2i} + \mu_{23}F_{3i} + \varepsilon_{2i}$$

$$Y_{3i} = \mu_{31}F_{1i} + \mu_{32}F_{2i} + \mu_{33}F_{3i} + \varepsilon_{3i}$$

$$Y_{4i} = \mu_{41}F_{1i} + \mu_{42}F_{2i} + \mu_{43}F_{3i} + \varepsilon_{4i}$$

$$Y_{5i} = \mu_{51}F_{1i} + \mu_{52}F_{2i} + \mu_{53}F_{3i} + \varepsilon_{5i}$$
...
$$Y_{pi} = \mu_{p1}F_{1i} + \mu_{p2}F_{2i} + \mu_{p3}F_{3i} + \varepsilon_{pi}$$

Fr	am	ed	as l	Mis	sing	Dat	ta P	robl	lem
Y ₁	Y ₂	Y ₃	Y ₄		Yp	F ₁	F_2		F_k
5	1	2	8		5	?	?		?
4	3	2	7		6	?	?		?
5	6	4	7		4	?	?		?
6	2	4	9		5	?	?		?
3	1	5	6		4	?	?		?

Empirical Example

- Perceptions of Adolescents
- Respondents asked to rate on a scale of 1-10 how likely it was that an adolescent would display given attribute
- 44 attributes in all, subset of 9 selected for this particular analysis

O	bserv	ed Co	ovaria	ince M	Matrix	c of A	ttribu	tes	
	1	2	3	4	5	6	7	8	9
Confused	2.98								
Considerate	-0.02	2.82							
Depressed	1.89	-0.08	4.56						
Emotional	1.36	-0.03	1.63	2.39					
Generous	0	1.93	0.17	0.09	2.66				
Hardworking	0.06	1.6	0.04	0.1	1.79	2.86			
Helpful	-0.04	1.68	-0.03	-0.02	1.82	1.89	2.6		
Intelligent	0.18	0.43	0.37	0.32	0.51	0.53	0.61	1.91	
Tests Limits	0.86	-0.28	1.12	0.73	0.14	-0.07	0.05	0.46	2.31

Two Factor ML Solut (solution presente	ion with d in cor	Varimax Rotation relation metric)	
	F1	F2	
Confused		.71	
Considerate	.77		
Depressed		.71	
Emotional		.70	
Generous	.85		
Hardworking	.78		
Helpful	.83		
Intelligent	.29	.18	
Tests Limits		.48	

- Population of raters is composed of heterogeneous mix of qualitatively different perspectives
- Successively test models with increasing K number of subgroups
- Subgroups represent qualitatively different perspectives (or types of raters)

	Gro	up Mea	ns	Pooled Within Variance
	1	2	3	
Confused	-0.37	0.02	0.23	2.91
Considerate	-1.54	1.53	-0.04	1.46
Depressed	-0.34	-0.02	0.23	4.48
Emotional	-0.53	-0.06	0.39	2.23
Generous	-1.66	1.66	-0.05	1.07
Hardworking	-1.53	1.56	-0.06	1.48
Helpful	-1.61	1.76	-0.16	0.96
Intelligent	-0.43	0.65	-0.16	1.71
Tests Limits	0.05	0.25	-0.21	2.26
Probabilities	0.28	0.29	0.43	

Similar... but not equal in fit

- Although the ML 3-class solution can be written as a 3 – factor model, the actual fit to the observed covariance matrix is poor
- The problem is immediately obvious if we remain flexible in viewing the mixture solution both as a factor model and as a mixture model
- The communality of the two factor solution is very different than the "between group" variance in the three group mixture

	Gro	up Mea	ns	Pooled Within Variance
	1	2	3	
Confused	-0.37	0.02	0.23	2.91
Considerate	-1.54	1.53	-0.04	1.46
Depressed	-0.34	-0.02	0.23	4.48
Emotional	-0.53	-0.06	0.39	2.23
Generous	-1.66	1.66	-0.05	1.07
Hardworking	-1.53	1.56	-0.06	1.48
Helpful	-1.61	1.76	-0.16	0.96
Intelligent	-0.43	0.65	-0.16	1.71
Tests Limits	0.05	0.25	-0.21	2.26
Probabilities	0.28	0.29	0.43	

	F1	F2
Confused		.71
Considerate	.77	
Depressed		.71
Emotional		.70
Generous	.85	
Hardworking	.78	
Helpful	.83	
Intelligent	.29	.18
Tests Limits		.48

Rotations

$$\Sigma = \Lambda \Phi \Lambda^T + \Theta$$

$$\Sigma = \Lambda T T^{T} \Phi T T^{T} \Lambda^{T} + \Theta$$

	Gro	up Mea	ns	Pooled Within Variance
	1	2	3	
Confused	-0.37	0.02	0.23	2.91
Considerate	-1.54	1.53	-0.04	1.46
Depressed	-0.34	-0.02	0.23	4.48
Emotional	-0.53	-0.06	0.39	2.23
Generous	-1.66	1.66	-0.05	1.07
Hardworking	-1.53	1.56	-0.06	1.48
Helpful	-1.61	1.76	-0.16	0.96
Intelligent	-0.43	0.65	-0.16	1.71
Tests Limits	0.05	0.25	-0.21	2.26
Probabilities	0.28	0.29	0.43	

	Group Means			Pooled Within Variance
	1	2	3	
Confused	-1.47	-0.14	0.23	2.91
Considerate	-10.39	0.25	-0.04	1.46
Depressed	-1.25	-0.15	0.23	4.48
Emotional	-1.87	-0.25	0.39	2.23
Generous	-11.22	0.28	-0.05	1.07
Hardworking	-10.44	0.27	-0.06	1.48
Helpful	-11.28	0.37	-0.16	0.96
Intelligent	-3.53	0.20	-0.16	1.71
Tests Limits	-0.51	0.17	-0.20	2.26

- · Mixture models often multimodal
- Suggestion is to start from variety of initial values
- Factor structure provides excellent choice of starting values
- In this example, four class mixture starting at hi/lo on two factor model fits very well

Summary

- Complementary view of mixture and factor models yields insight for estimation and interpretation
- Many areas for future research on this topic (estimation, model diagnostics, extensions to other models etc.)